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Abstract

The conventional magnetic induction equation that governs hydromagnetic dynamo action is transformed into an
equivalent integral equation system. An advantage of this approach is that the computational domain is restricted to
the region occupied by the electrically conducting fluid and to its boundary. This integral equation approach is first
employed to simulate kinematic dynamos excited by Beltrami-like flows in a finite cylinder. The impact of externally added
layers around the cylinder on the onset of dynamo actions is investigated. Then it is applied to simulate dynamo experi-
ments within cylindrical geometry including the ‘‘von Kármán sodium” (VKS) experiment and the Riga dynamo experi-
ment. A modified version of this approach is utilized to investigate magnetic induction effects under the influence of
externally applied magnetic fields which is also important to measure the proximity of a given dynamo facility to the
self-excitation threshold.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Dynamo action in moving electrically conducting fluids explains the existence of cosmic magnetic fields,
including the fields of planets, stars, and galaxies [1]. As long as the magnetic field is weak and its influence
on the velocity field is negligible we speak about the kinematic dynamo regime. When the magnetic field has
gained higher amplitudes the velocity field will be modified, and the dynamo enters its saturation regime.

The usual way to simulate dynamos numerically is based on the induction equation for the magnetic field B,
0021-9

doi:10

E-m
1 Pre

Shand
oB

ot
¼ r� ðu� BÞ þ 1

lr
DB; r � B ¼ 0; ð1Þ
991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

.1016/j.jcp.2008.05.009

ail address: F.Stefani@fzd.de (F. Stefani).
sent address: Institute of Thermal Science and Technology, Shandong University, P.O. Box 88, Jin Shi Road 73, Jinan City,
ong Province, PR China.

mailto:F.Stefani@fzd.de


M. Xu et al. / Journal of Computational Physics 227 (2008) 8130–8144 8131
where u is the given velocity field, l the permeability of the fluid, and r its electrical conductivity. The behav-
iour of the magnetic field B in Eq. (1) is controlled by the ratio of field production and field dissipation, ex-
pressed by the magnetic Reynolds number Rm ¼ lrLU , where L and U are typical length and velocity scales of
the flow, respectively. When the magnetic Reynolds number reaches a critical value, henceforth denoted by Rc

m,
the dynamo starts to operate.

Eq. (1) follows directly from pre-Maxwell’s equations and Ohm’s law in moving conductors. In order to
make this equation solvable, boundary conditions of the magnetic field must be prescribed. In the case of van-
ishing excitations of the magnetic field from outside the considered finite region, the boundary condition of the
magnetic field is given as follows:
B ¼ Oðr�3Þ as r !1: ð2Þ

Kinematic dynamos are usually simulated in the framework of the differential equation approach by solving
the induction Eq. (1). For spherical dynamos, as they occur in planets and stars, the problem of implementing
the non-local boundary conditions for the magnetic field is easily solved by using decoupled boundary condi-
tions for each degree of the spherical harmonics. For other than spherically shaped dynamos, in particular for
galactic dynamos and some of the recent laboratory dynamos working in cylindrical geometry [2], the han-
dling of the non-local boundary conditions is a notorious problem.

The simplest way to circumvent this problem is to replace the non-local boundary conditions by simplified
local ones (so-called vertical field condition). This is often used in the simulation of galactic dynamos [3], and
has also been tested in an approximate simulation of the Riga dynamo experiment [4].

For the simulation of the cylindrical Karlsruhe dynamo experiment, the actual electrically conducting
region was embedded into a sphere, and the region between the sphere and the surface of the dynamo was
virtually filled by a medium of lower electrical conductivity [5,6].

Of course, both methods are connected with losses of accuracy. In order to fully implement the non-local
boundary condition, Maxwell’s equations must be fulfilled in the exterior, too. This can be implemented in
different ways. For the finite difference simulation of the Riga dynamo, the Laplace equation was solved
(for each time-step) in the exteriour of the dynamo domain and the magnetic field solutions in the interiour
and in the exterior were matched using interface conditions [7]. A similar method, although based on the finite
element method, was presented by Guermond et al. [8,9]. Another, and quite elegant, technique to circumvent
the solution in the exteriour was presented by Iskakov et al. [10,11] where a combination of a finite volume and
a boundary element method was used to circumvent the discretization of the outer domain.

An alternative to the differential equation approach (DEA) based on the solution of the induction equation
is the integral equation approach (IEA) for kinematic dynamos which basically relies on the self-consistent
treatment of Biot-Savart’s law. For the case of a steady dynamo acting in infinite domains of homogeneous
conductivity, the integral equation approach had already been employed by a few authors [12–15]. For the
case of finite domains, the simple Biot-Savart equation has to be supplemented by a boundary integral equa-
tion for the electric potential [16,17]. If the magnetic field becomes time-dependent, yet another equation for
the magnetic vector potential has to be added [18].

In the present work, the integral equation approach is applied to various dynamo problems in cylindrical
geometry. Two variants of the approach are presented: in the first one, it is implemented as an eigenvalue sol-
ver to solve genuine dynamo problems. In the second one, it is used to treat induction effects in the case of
externally applied magnetic fields. Actually, the first variant was already at the root of the paper [19] where
a surprising negative impact of sodium layers behind the propellers in the ‘‘von Kármán sodium” (VKS)
experiment was identified. It was not least this finding that prompted the VKS team to modify the experiment
which made it ultimately successful [20,21]. After the derivation of the equation system in cylindrical geom-
etry, we switch over to the treatment of specific problems, including the free decay case, the mentioned
‘‘von Kármán sodium” (VKS) experiment [22,23], and the Riga dynamo experiment [24–27].

2. Mathematical formulation

Assume the electrically conducting fluid be confined in a finite region V with boundary S, the exterior of
this region filled by insulating material or vacuum. Then, dynamo and induction processes can be described
[16] by the following integral equation system:
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bðrÞ ¼ lr
4p

Z
V

ðuðr0Þ � ðB0ðr0Þ þ bðr0ÞÞÞ � ðr� r0Þ
jr� r0j3

dV 0 � lrk
4p

Z
V
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jr� r0j3

dV 0

� lr
4p

Z
S

/ðs0Þnðs0Þ � r� s0
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dS0; ð3Þ
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4p
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AðrÞ ¼ 1

4p

Z
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ðB0ðr0Þ þ bðr0ÞÞ � ðr� r0Þ
jr� r0j3

dV 0 þ 1

4p

Z
S

nðs0Þ � B0ðs0Þ þ bðs0Þ
jr� s0j dS0; ð5Þ
where B0 is the externally applied magnetic field (which might be zero), b the induced magnetic field, u the
velocity field, l the permeability of the fluid (which is in most relevant cases the permeability of the vacuum),
r the electrical conductivity, A the vector potential, and / the electric potential. n denotes the outward directed
unit vector at the boundary S. For a steady velocity field, the time dependence of all electromagnetic fields can
be assumed to be � exp kt. We have to distinguish three different cases: For non-zero B0, and below the self-
excitation threshold, the imaginary part of k is simply the angular frequency of the applied and also of the
induced magnetic field. For B0 ¼ 0 the equation system (3)–(5) represents an eigenvalue equation for the un-
known time constant k whose real part is the growth rate, and its imaginary part the angular frequency of the
fields. For B0 ¼ 0 and k ¼ 0, we need only Eqs. (3) and (4) which then represent an eigenvalue problem for the
critical value of the velocity u at which the (non-oscillatory) dynamo starts to work.

2.1. General numerical scheme

Although, in this paper, we will focus mainly on cylindrical systems it might be instructive to delineate the
general numerical scheme for the solution of Eqs. (3)–(5).

Assuming a specific discretization of all fields in Eqs. (3)–(5), we obtain
bi ¼ lr½P ikðB0k þ bkÞ � kRijAj � Qil/l�; ð6Þ
Gml/l ¼ SmkðB0k þ bkÞ � kT mjAj; ð7Þ
Aj ¼ W jkðB0k þ bkÞ; ð8Þ
where Einstein’s summation convention is assumed. We have used the notion Gml ¼ 0:5dml þ U ml. B0k and bk

denote the degrees of freedom of the externally added magnetic field and the induced magnetic field, Aj the
degrees of freedom of the vector potential in the volume V, /l the degrees of freedom of the electric potential
at the boundary surface. Note that only the matrices P ik and Smk depend on the velocity (the sources of the
dynamo action), while Rij, Qil, T mj, Gml and W jk depend only on the geometry of the dynamo domain and
the discretization details.

Substituting Eqs. (7) and (8) into Eq. (6) and eliminating Aj and /l gives one single matrix equation for the
induced magnetic field components bi:
bi ¼ lr½P ikðB0k þ bkÞ � kRijW jkðB0k þ bkÞ � QilG
�1
lm SmkðB0k þ bkÞ þ kQilG

�1
lm T mjW jkðB0k þ bkÞ�: ð9Þ
This equation can be further rewritten in the following form:
½dik � lrEik � lrkF ik�bk ¼ ½lrEik þ lrkF ik�B0k; ð10Þ

where Eik ¼ P ik � QilG

�1
lm Smk and F ik ¼ �RijW jk þ QilG

�1
lm T mjW jk. To compute induction effects, the induced

magnetic field is obtained by solving the algebraic equation system (10). For the kinematic dynamo, Eq.
(10) reduces to the following generalized eigenvalue problem:
½dik � lrEik�bk ¼ k�F ikbk; ð11Þ
where k� is a new time constant rescaled according to k� ¼ lrk.
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2.2. Cylindrical geometry

Since a number of dynamo experiments are carried out in cylindrical vessels, it is worth to specify the inte-
gral equation approach to this geometry. As long as the dynamo source (i.e. the velocity field or a correspond-
ing mean-field quantity) is axisymmetric, the different azimuthal modes of the electromagnetic fields can be
decoupled. This leads to a tremendous reduction of the numerical effort. The price we have to pay for this
is the necessity to carefully deriving the dimensionally reduced version of the integral equation system.

The electrically conducting fluid is assumed to be confined in a cylinder with radius R and height 2H . Intro-
ducing the cylindrical coordinate system (q;u; z), we have
r ¼ ½q cos u; q sin u; z�T; b ¼ ½bq; bu; bz�T; u ¼ ½uq; uu; uz�T: ð12Þ

The magnetic field b, the electric potential /, and the vector potential A are expanded into azimuthal modes:
b

/

A

0
B@

1
CA ¼ X1

m¼�1

bm

/m

Am

0
B@

1
CA expðimuÞ: ð13Þ
When the velocity field is axisymmetric (i.e. it has only a component with m ¼ 0), one can see that the fields
½bm;/m;Am�T with different m ¼ 0;�1;�2; . . . decouple from each other. Henceforth, we will always re-denote
½bm;/m;Am�T as ½b;/;A�T for the sake of convenience in the notation. Then, after integrating over u, Eq. (3)
acquires the form
bq ¼
lr
4p

Z H
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0

½ððz� z0ÞEm
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�
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0

/q02Em
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Z H
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�

þ
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0

/q02Em
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Z H

�H

Z R

0
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c Au þ q0Em
s AzÞq0 dq0 dz0

�
; ð14Þ
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lr
4p

Z H

�H

Z R

0

½ð�ðqEm
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1 � q0Em
c Þuq

�
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c ÞðB0u þ buÞ þ ð�ðz� z0ÞuuEm

c � iðz� z0ÞuqEm
s ÞðB0z þ bzÞ�q0 dq0 dz0

�

�
Z R

0

/ðqq0Em
1 jz0¼H � q02Em

c jz0¼H Þdq0 þ
Z H

�H
/Rðz� z0ÞEm

c jq0¼R dz0

�
Z R

0

/ð�qEm
1 jz0¼�H þ q0Em

c jz0¼�HÞq0 dq0 � k
Z H

�H

Z R

0

ððz� z0ÞEm
s Au � ðz� z0ÞEm

c Aq

þ qEm
1 � q0Em

c ÞAzÞq0 dq0 dz0
� �

; ð15Þ

bz ¼
lr
4p

Z H

�H

Z R

0

½ðq0Em
1 � qEm

c ÞuzðB0q þ bqÞ þ iqEm
s uzðB0u þ buÞ

�

þ ð�q0Em
1 þ qEm

c Þuq � iqEm
s uuÞðB0z þ bzÞ�q0 dq0 dz0

�

þ
Z H
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/RqEm

s jq0¼R dz0 � k
Z H

�H

Z R

0

ð�qEm
s Aq þ ðq0Em

1 � qEm
c ÞAuÞq0 dq0 dz0

�
; ð16Þ
where the following azimuthal integrals appear:
Em
1 ðq; q0; z; z0Þ ¼

Z 2p

0

cos mu0

ðq2 þ q02 � 2qq0 cos u0 þ ðz� z0Þ2Þ
3
2

du0;

Em
c ðq; q0; z; z0Þ ¼

Z 2p

0

cos mu0 cos u0

ðq2 þ q02 � 2qq0 cos u0 þ ðz� z0Þ2Þ
3
2

du0;
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Em
s ðq; q0; z; z0Þ ¼

Z 2p

0

sin mu0 sin u0

ðq2 þ q02 � 2qq0 cos u0 þ ðz� z0Þ2Þ
3
2

du0:
Accordingly, from Eq. (4), we obtain the expressions for the electric potentials at the three different surface
parts of the cylinder:
1

2
/ðs1Þ ¼

1

4p

Z H

�H
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ð�q0qEm
s jz¼H uz � q0ðH � z0ÞuuEm
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�
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/RðqEm
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i
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1
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�
: ð19Þ
Here, s1 is the surface z ¼ H , s2 the surface q ¼ R, s3 the surface z ¼ �H . Eq. (5) for the vector potential gets
the form
Aq ¼
1

4p

Z H

�H

Z R

0

q0ðz� z0ÞEm
s ðB0q þ bqÞ þ q0ðz� z0ÞEm
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; ð20Þ
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Az ¼
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where the following abbreviations of azimuthal integrals were used:
Dm
s ðq; q0; z; z0Þ ¼

Z 2p

0

sin u0 sin mu0

ðq2 � 2qq0 cos u0 þ q02 þ ðz� z0Þ2Þ
1
2

du0;

Dm
c ðq; q0; z; z0Þ ¼

Z 2p

0

cos u0 cos mu0

ðq2 � 2qq0 cos u0 þ q02 þ ðz� z0Þ2Þ
1
2

du0;

Dm
1 ðq; q0; z; z0Þ ¼

Z 2p

0

cos mu0

ðq2 � 2qq0 cos u0 þ q02 þ ðz� z0Þ2Þ
1
2

du0:
In our numerical scheme, we typically use equidistant grid points qi ¼ iDr and zj ¼ jDz to discretize the inter-
vals ½0;R� and ½�H ;H �, respectively (in some applications non-equidistant grid points are also used). The ex-
tended trapezoidal rule is applied to approximate all the integrals in Eqs. (14)–(22). Then we obtain the
following matrix equations:
bq

bu

bz

0
B@

1
CA ¼ lr P

B0q þ bq

B0u þ bu

B0z þ bz

0
B@

1
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/s1

/s2
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0
B@

1
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0
B@

1
CA

2
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3
75; ð23Þ
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/s2
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0
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0
B@

1
CA� kT

Aq

Au

Az

0
B@

1
CA�U

/s1

/s2

/s3

0
B@

1
CA; ð24Þ

Aq

Au

Az

0
B@

1
CA ¼W

B0q þ bq

B0u þ bu

B0z þ bz

0
B@

1
CA; ð25Þ
where the matrix elements of P, Q, R, S, T, U, and W can be read off from Eqs. (14)–(22). Combining Eqs.
(23)–(25), we obtain
ðI� lrE� lrkFÞb ¼ lrðEþ kFÞB0; ð26Þ

where
E ¼ P�Q � 1

2
IþU

� ��1

� S; ð27Þ

F ¼ Q � 1

2
IþU

� ��1

� T �W� R �W: ð28Þ
After solving the algebraic equation system (26), the induced magnetic field b can be obtained for the magnetic
induction process.

For the kinematic dynamo problem, the following generalized eigenvalue problem has to be solved:
ðI� lrEÞ � b ¼ k�F � b ð29Þ

for the given velocity field u, where k� ¼ lrk. Note that a quite similar numerical scheme can be established in
spherical geometry for the case of axisymmetric dynamo sources.

3. Numerical implementation and results

In this section, the integral equation approach will be applied to various cylindrical dynamo and induction
problems of experimental relevance. We start with the problem of the free decay of a magnetic field in a
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cylinder. Then, a class of Beltrami-like flows will be considered. In all the problems we use the QZ algorithm
[28] which is a modification of the QR algorithm for the case of generalized non-Hermitian eigenvalue
problems.

The integral equation approach is further employed to investigate the induction effect of the VKS experi-
ment. The algebraic equation system is solved by the LU decomposition. The obtained induced magnetic field
will be compared with the data measured in experiment.

At the end we deal with the Riga dynamo experiment with its large ratio of height to radius. Due to the
large resulting matrices we shift here from direct matrix inversion methods to the generalized inverse iteration
method [29].

3.1. Free field decay in a finite cylinder

The simplest problem to start with is the free decay of a magnetic field in a finite length cylinder of radius 1
and height 1. This example was already treated by Iskakov et al. [10]. Within the integral equation approach
we use a grid resolution of 20� 20 in the r–z-plane. In Fig. 1, we show the magnetic field lines of the slowest
decaying eigenfield, which has the same dipolar structure as in Fig. 8 in [10].

3.2. Beltrami-like flows

In this section, we consider a class of flows in finite cylinders which we call ‘‘Beltrami-like” flows. Actually,
Beltrami was the first [30] to consider velocity fields vðrÞ with the property r� vðrÞ ¼ bvðrÞ. Later, Chandra-
sekhar and Kendall [31] calculated eigenfunctions of the curl operator which give a complete base of helical
fields in many geometries, including the sphere and the cylinder [32,33]. In plasma physics, magnetic fields ful-
filling the Beltrami condition play a significant role since they are force-free. In dynamo theory, there is par-
ticular interest in such flows since they are also helicity maximizing. Helicity maximizing flows, in turn, are
well known to possess quite small critical Rm, a fact that was utilized, e.g. in the optimization of the Riga
dynamo experiment [7]. The actual flow structures that will be treated in this work were proposed by Léorat
[34], and a certain sub-class of them (with ideally conducting boundary conditions, however) was considered
by Wang et al. [35].

We use the notation s�mtn to characterize flows with m poloidal vortices and n toroidal vortices. The sign �
indicates that the poloidal flow in the equatorial plane is directed inward (þ) or outward (�), respectively. An
impression of the topology of the flow structure can be obtained from Fig. 2 where we have also indicated
possible propeller or rotating disk configurations to produce such flows.
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Fig. 1. Freely decaying magnetic field in a finite cylinder with R ¼ 2H ¼ 1.



Fig. 3. Magnetic field structure for s1t1 flow with w ¼ 0:5. (a) Poloidal field component. (b) Contour plot of the toroidal field component.
(c) Three dimensional field structure.

Fig. 2. Illustration of the considered flow topologies s�mtn, and of typical propeller or rotating disk configurations to produce them.
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The analytical expression of the flows to be considered in this paper are as follows:
vrðr; zÞ ¼ c1J 1ðarÞ cosðmpðzþ HÞ=2HÞ; ð30Þ
vuðr; zÞ ¼ sJ 1ða rÞ cosðnpðzþ HÞ=2HÞ; ð31Þ
vzðr; zÞ ¼ �c1c2a=pJ 0ðarÞ sinðmpðzþ HÞ=2HÞ; ð32Þ
where a ¼ 3:8317 is the first root of the Bessel function J 1. In the following, we will restrict ourselves to
m; n ¼ 1; 2. c1 ¼ 1 for all sþmtn flows, c1 ¼ �1 for all s�mtn flows, c2 ¼ H=2 for s1t1 flow and for other flows
c2 ¼ 1. Again, 2H is the height of the cylinder, z 2 ½�H ;H �. In the following discussion the height of the cyl-
inder is set to 2 and the radius is fixed to 1. The parameter s indicates the ratio of toroidal to poloidal flow. We
will consider values of s close to 2 which turned out to be advantageous for dynamo action. Actually, this
value s ¼ 2 is not the value which would correspond to an exact Beltrami flow. This is the reason why we have
called the considered flows ‘‘Beltrami-like”.

In what follows, we will use a definition of the magnetic Reynolds number Rm which is based on the max-
imum of the axial velocity. In order to display the results for the s�mtn in one common figure we will use the � as
a sign of Rm according to Rm ¼ �lrRjvmax

z j.
For the case without external layer (w ¼ 0) we found that only the sþ2 t2 dynamo is steady, all the others are

oscillatory. However, if an external layer around the finite cylinder is added, even if the thickness of the layer is
quite small, for example, equal to 0.05, the s�2 t2 dynamo becomes steady.

The magnetic field structures for s1t1, s�2 t1, sþ2 t1, s�2 t2 and sþ2 t2 flows are shown, at an azimuthal section at
u ¼ 0, in Figs. 3, 5, 6,8, 9, respectively. In all these cases, an externally added layer with thickness equal to 0:5
has been considered. The variations of growth rates of the magnetic fields with respect to the magnetic Rey-
nolds number for all the flows are depicted in Figs. 4, 7 and 10. From these figures, one can see that the exter-
nally added layer has a very strong impact on the onset of dynamo actions. For example, the critical magnetic



Fig. 5. Magnetic field structure for s�2 t1 flow.

Fig. 6. Magnetic field structure for sþ2 t1 flow.
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Fig. 4. Growth rates for s1t1 flow and the influence of the externally added layers with thickness w.
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Reynolds number for the flow s�2 t1 is approximately equal to 143 in the case without external layer. When an
external layer with thickness 0.2 is considered, the critical magnetic Reynolds number reduces to 61. If the
thickness of the external layer is increased to 0.5, the critical magnetic Reynolds number further declines to
40. Finally, one can also note that there is a tendency that when the thickness of the external layer becomes
larger, the curves of the growth rates become more symmetric with respect to the ordinate axis at Rm ¼ 0.



Fig. 9. Magnetic field structure for sþ2 t2 flow.
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Fig. 7. Growth rates for s�2 t1 flow and influence of the externally added layers.

Fig. 8. Magnetic field structure for s�2 t2 flow.
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In Fig. 11 we show, for the flow sþ2 t2 with different widths w of the external layer, the dependence of the
critical Rm on the parameter s which measures the ratio of toroidal to poloidal motion. For w ¼ 0 we show,
in addition to the results of the integral equation approach, also the results of a finite difference code based on
the differential equation approach as it was described in [7] and also used in [19]. In general, we observe a good
correspondence of the results of both methods which, however, deteriorates slightly for increasing values of s.
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Fig. 10. Growth rates for s�2 t2 flow and influence of the externally added layers.
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3.3. Induction effects in the VKS Experiment

Since the sþ2 t2 flows are characterized by a comparatively low critical Rm, much focus was laid on their real-
ization in experimental dynamos. Both the spherical Madison dynamo experiment (MDX) [36,37] and the
cylindrical ‘‘von Kármán sodium” experiment (VKS) [22,23] are realizations of the sþ2 t2 flow.

Although a recent version (using impellers with a high magnetic permeability lrel � 200, and a thin ring in
the equatorial plane to reduce the turbulence level) of the VKS 2 experiment has shown dynamo action [20]
and even a kind of polarity reversals [21], the under-performance of the original VKS 2 experiment compared
to numerical predictions is still a matter of interest. The possibility, that the rather high turbulence level
impedes the self-excitation, was discussed in several recent papers [38,39]. While this impact of turbulent fluc-
tuations on the dynamo action cannot be addressed within our kinematic dynamo solver, another possible
explanation was given in [19] where we discussed the detrimental effect of sodium layers behind the propellers.
The sheer existence of these layers leads already to a significant increase of the critical Rm which becomes dra-
matic if a realistic rotation therein is taken into account.

Even below the threshold of self-excitation, one can evaluate the quality of a dynamo by measuring induced
magnetic fields. For the VKS 1 experiment, this had been done by Marie et al. [40]. In the VKS 2 experiment
without iron propellers, the measured induced magnetic fields, for large Rm, are significantly weaker than the
numerically predicted ones. Using our method we will try to figure out if this effect can also be attributed to
the existence of lid layers and the flow therein.

A schematic sketch of the VKS 2 experiment is given in Fig. 12(a). A rather realistic flow field, resulting
from the so-called TM73 propeller [41] (which was identified as a sort of optimal flow field), is considered
in our calculation. Some interpolations were necessary to project this flow field onto the grids used in our code.
More details on this can be found in [19].
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Fig. 12. Induction effects in the VKS experiment. (a) Schematic drawing of the experimental set-up. Two counter-rotating impellers drive
a sþ2 t2 flow within a cylindrical vessel. The dimensions are given in mm. (b) Ratio of induced axial and azimuthal magnetic field to the
applied magnetic field. Experimental results at radius r ¼ 0:5 (taken from [42]) and numerical results under the assumptions of static and
rotating lid layers.
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In the original VKS 2 experiment a static external magnetic field was applied in the transverse direction.
The induced magnetic field was measured in the direction perpendicular to the externally added magnetic field
at the point r ¼ 0:5 in the equatorial plane. In the following the induced magnetic fields near the r ¼ 0:5 points
obtained by our integral equation approach are compared with the measured ones. The influence of a rotating
flow in the lid layer on the induced field is investigated. Two kinds of velocity field in the lid layer are consid-
ered. The first one is a static lid layer. The second one is that only a rotation of the lid layer is assumed, but vu

remains constant in the axial direction, its dependence on the radial variable is the same as on the interface
between the lid layer and inner part of the cylinder. For both cases, the numerical axial and azimuthal induced
fields around the point r ¼ 0:5 and the experimental result at r ¼ 0:5 on the equatorial plane are shown in Fig.
12(b) for different magnetic Reynolds numbers. From these figures one can see that the case with rotation
shows a best agreement with the experimental one. This applies particularly to the axial magnetic field, while
for the azimuthal magnetic field, when the magnetic Reynolds number is larger than 30, there is still a gap
between the numerical results and the experimental ones.

Nevertheless, it is quite likely that it is indeed the existence of lid layers and some azimuthal flow therein
which is, at least partially, responsible for the unexpected under-performance of the original VKS 2 dynamo
experiment.

3.4. Riga experiment

In this subsection, the integral equation approach is used to re-simulate the kinematic regime of the Riga
dynamo experiment. In this experiment, magnetic field self-excitation had been observed for the first time in
November 1999 [24]. Since that time, it has served for extensive investigations of the kinematic and the satu-
rated dynamo regime [25,27,2,26]. Basically, this experiment (Fig. 13(a)) consists of three concentric cylinders



Fig. 13. Riga dynamo and its eigenfield. (a) Central module of the experimental set-up. (1) Upper bending region; (2) propeller; (3) central
helical flow region; (4) return-flow region; (5) outer sodium region; (6) guiding vanes for straighting the flow in the return flow; (7) lower
bending region. (b) Isosurface plot of the magnetic energy of the simulated eigenfield. The isosurface corresponds to 25% of the maximum
magnetic energy. (c) Magnetic field lines of the eigenfield.
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Fig. 14. Comparison of the IEA and DEA results for the Riga dynamo experiment, together with experimental results. (a) Growth rate.
(b) Frequency.
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filled with liquid sodium. In the innermost cylinder, a helical flow with a speed up to 20 m/s is produced by a
motor-driven propeller. After being redirected in a bending region, sodium flows back in a second cylinder.
The outermost cylinder filled with sodium at rest is only intended to improve the boundary conditions for
the magnetic field.

This experiment had been optimized and analyzed extensively within the differential equation approach
(DEA) by means of a finite difference solver [7]. The values of the velocity field on the grids used in our code
are obtained by interpolating the experimental velocity field measured in a water-dummy experiment. The
influence of less conducting stainless steel walls has not been taken into account.

Within the integral equation approach, the computations have been carried out on a 100� 20 grid in z- and
r-direction. The structure of the magnetic eigenfield is also illustrated in Fig. 13. Fig. 13(b) shows the
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isosurface of the magnetic field energy (this time at 25% of the maximum value). In Fig. 13(c), the magnetic
eigenfield lines are depicted. Basically the structure is the same as that resulting from the differential equation
approach [27] with a 401� 64 grid in z- and r-direction.

The dependence of the growth rate and frequency of the eigenmode of the Riga dynamo experiment on the
rotation rate is shown in Fig. 14(a) and (b), respectively. The comparison with the DEA results shows that the
slopes of the curves are in good agreement. However, we see that the limited grid resolution in the IEA leads to
significant shifts in the order of 5% towards lower rotation rates for the growth rate and of 10% towards
higher rotation rate for the frequency. Hence, it could be said that the Riga dynamo experiment marks a mar-
gin of reasonable applicability of the IEA with its need to invert large matrices which are fully occupied.
4. Concluding remarks

In the present paper, the integral equation approach to kinematic dynamos has been applied to non-spher-
ical geometries. The method was examined by its application to the free field decay. The comparison of the
obtained results with other methods shows a good agreement. The integral equation approach was extended
to investigate induction effects of the VKS experiment. The obtained induced magnetic field shows a satisfac-
tory agreement with the experimental result when the effect of the lid layers and a certain azimuthal flow
therein are taken into account. Finally, it was applied to simulate the Riga dynamo experiment.

It can be concluded that the integral equation approach is robust and reliable and can be used for practical
purposes, although limits of its applicability are seen for the Riga dynamo experiment with its large ratio of
length to radius.
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[23] F. Pétrélis et al., Nonlinear magnetic induction by helical motion in a liquid sodium turbulent flow, Phys. Rev. Lett. 90 (2003) 174501.
[24] A. Gailitis et al., Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility, Phys. Rev. Lett. 84 (2000) 4365–

4368.
[25] A. Gailitis et al., Magnetic field saturation in the Riga dynamo experiment, Phys. Rev. Lett. 86 (2001) 3024–3027.
[26] A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, F. Stefani, The Riga dynamo experiment, Surv. Geophys. 24 (2003) 247–267.
[27] A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, F. Stefani, Riga dynamo experiment and its theoretical background, Phys. Plasmas

11 (2004) 2838–2843.
[28] C. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10 (1973) 241–256.
[29] D.J. Ivers, C.G. Phillips, A vector spherical harmonic spectral code for linearised magnetodydrodynamics, ANZIAM J. 44 (E) (2003)

C423–C442.
[30] E. Beltrami, Considerazione idrodinamiche, Rend. Inst. Lobardo Acad. Sci. Lett. 22 (1889) 122–131.
[31] S. Chandrasekhar, P.C. Kendall, On force-free magnetic fields, Astrophys. J. 126 (1957) 457–460.
[32] D. Montgomery, L. Turner, G. Vahala, Three-dimensional magnetohydrodynamic turbulence in cylindrical geometry, Phys. Fluids

21 (1978) 757–764.
[33] Z. Yoshida, Eigenfunction expansion associated with the curl derivatives in cylindrical geometries: completeness of Chandrasekhar–

Kendall eigenfunctions, J. Math. Phys. 33 (1992) 1252–1256.
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